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Artificial Intelligence (AI) is the ability of machines to perform tasks that normally
require human intelligence. AI is not a new term, the concept of AI can be
dated back to 1950. However, it has not become a practical tool until two
decades ago. Owing to the rapid development of three cornerstones of current
AI technology—big data (coming through digital devices), computational power,
and AI algorithm—in the past two decades, AI applications have been started to
provide convenience to people’s lives. In dentistry, AI has been adopted in all
dental disciplines, i.e., operative dentistry, periodontics, orthodontics, oral and
maxillofacial surgery, and prosthodontics. The majority of the AI applications in
dentistry go to the diagnosis based on radiographic or optical images, while
other tasks are not as applicable as image-based tasks mainly due to the
constraints of data availability, data uniformity, and computational power for
handling 3D data. Evidence-based dentistry (EBD) is regarded as the gold
standard for the decision-making of dental professionals, while AI machine
learning (ML) models learn from human expertise. ML can be seen as another
valuable tool to assist dental professionals in multiple stages of clinical cases.
This review narrated the history and classification of AI, summarised AI
applications in dentistry, discussed the relationship between EBD and ML, and
aimed to help dental professionals to understand AI as a tool better to assist
their routine work with improved efficiency.
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1. Introduction

The fourth industrial revolution opens a new digital era, of which one of the most

important contributions is Artificial Intelligence (AI). With more and more electronic

devices assisting people’s life comprehensively, the data recorded by those devices made it

possible to easily use and analyse the data coming from those electronic devices by AI. AI

is blooming and expanding rapidly in all sectors. It can learn from human expertise and

undertake works typically requiring human intelligence. One of its definitions (1) is “the

theory and development of computer systems able to perform tasks normally requiring

human intelligence, such as visual perception, speech recognition, decision making, and

translation between languages”.

AI has been adopted in many fields of industry, such as robots, automobiles, smart

city, and financial analysis, etc. It has also been used in medicine and dentistry, for

example, medical and dental imaging diagnostics, decision support, precision and

digital medicine, drug discovery, wearable technology, hospital monitoring, robotic
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and virtual assistants. In many cases, AI can be regarded as a

valuable tool to help dentists and clinicians reduce their

workload. Besides diagnosing diseases using a single

information source directed at a specified disease, AI can learn

from multiple information sources (multi-modal data) to

diagnose beyond human capabilities. For example, fundus

photographs with other medical data such as age, gender,

BMI, smoking habits, blood pressure, and the likelihood of

diabetes has been used to predict heart disease (2). Thus, the AI

can discover not only eye diseases such as diabetic retinopathy

from fundus photography, but also heart disease. It looks like

image-based analysis using AI is sound and successful. All these

rely on the rapid development (as an output) of computing

capacity (hardware), algorithmic research (software), and large

database (input data). Given these, there are great potentials to

use AI in the dental and medical field.

Many studies on AI applications in dentistry are undergoing or

even have been put into practise in the aspects such as diagnosis,

decision-making, treatment planning, prediction of treatment

outcome, and disease prognosis. Many reviews regarding dental

AI (3–8) have been published, while this review aims to narrate

the development of AI from incipient stages to present, describe

the classifications of AI, summarise the current advances of AI

research in dentistry, and discuss the relationship between

Evidence-based dentistry (EBD) and AI. The limitations of

current AI development in dentistry are also discussed.
2. Artificial intelligence

2.1. History of AI

Artificial intelligence is not a new term. Alan Turing wrote in

his paper “Computing Machinery and Intelligence” (9) in the 1950

issue of Mind:

“I believe that at the end of the century (20th), the use of words

and general educated opinion will have altered so much that one

will be able to speak of machines thinking without expecting to

be contradicted.”

Back then, there was no term to interpret AI; Turing described

AI as “machines thinking”. He mathematically investigated the

feasibility of AI and explored how to construct intelligent

machines and assess machine intelligence. He proposed that

humans solve problems and make decisions by utilising available

information and inference, machines also can do the same thing.

In the paper (9), Turing proposed setting a test as to whether a

machine can achieve human-level intelligence. This test is known

as the Turing Test. It lies on the following lines: Assuming a

human evaluator could distinguish natural language

communications between a human test taker and a machine. It is

given that a human evaluator knows that the conversation is

between a human and a machine, and the human evaluator,

human test taker and machine are separated from one another.

The conversation between the human test taker and the machine
Frontiers in Dental Medicine 02
is limited to plain text, i.e., keyboard input, instead of speech.

This is to make the test only focus on the machine’s ability to

answer the questions logically instead of testing its speech

interpretation ability. If the human evaluator cannot distinguish

the human test taker and the machine, the machine can be

viewed as having passed the Turing Test, and such a machine is

said to have “machine intelligence”.

Later, in 1955, the term AI was first proposed in a 2-month

workshop: Dartmouth Summer Research Project on Artificial

Intelligence (10) led by John McCarthy, Marvin Minsky,

Nathaniel Rochester, and Claude Shannon. However, the concept

was only on paper. Certain restrictions stopped researchers from

developing real AI machines in the 1950s. Firstly, computers

before 1949 lacked a fundamental prerequisite for AI tasks: there

was no storage function, which means the codes could not be

stored, they could only be executed. Secondly, computers were

costly at that time. Lastly, funding sources had conservative

attitudes towards this new field back then (11).

From 1957 to 1974, the AI field was fast-growing because of

the growth of computer power, its accessibility, and AI

algorithms. Examples include ELIZA, a computer program that

could interpret spoken language and solve problems via text

(12). Two “AI Winters” arrived after the first wave of

development due to insufficient practical applications and

research funding reduction in the mid-1970s and late 1980s

(13). However, AI had its breakthrough between the two

periods with very few developments. In the 1980s, it developed

through two paths: machine learning (ML) and expert systems.

They are two opposite approaches to AI considering their

theory. ML allows computers to learn by experience (14);

expert systems, on the contrary, simulate the decision-making

process of human experts (15). In other words, ML finds the

solution by learning and summarizing the experience by itself,

while expert systems need human experts to input all possible

situations and solutions in advance. Expert systems have

largely been used in industry since then. The example includes

R1 (Xcon) program, an expert system with around 2,500 rules

for assisting components selection for computer assembly was

developed (16) and used by DEC, a computer manufacturer.

Two important time points in computer vision are 2012 and

2017. In 2012, a graphics processing unit (GPU)-implemented

deep learning (DL) network with eight layers was developed (17),

The work won the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) and achieved a classification top-5 error of

15.3%. The error rate was more than 10.8% lower than the

runner-up. In 2017, SE-NET further lowered the top-5 error to

2.25%, surpassing the human top-5 error (5.1%) (18).

Later famous AI examples include Deep Blue—a chess-playing

expert system, which defeated chess champion of the time Gary

Kasparov in 1997 (19); 20 years later in 2017, Google’s AlphaGo, a

DL program, defeated the world No. 1 ranked player Jie Ke in a Go

match (20); recently in late 2022, OpenAI launched ChatGPT (Chat

Generative Pre-trained Transformer), it is a text-generation model

that can generate human-like responses based on text input, the

model received extensive discussion since its launch (21). These

examples used different AI approaches to operate.
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TABLE 1 A comparison of supervised learning, semi-supervised learning,
and unsupervised learning.

Items Supervised
learning

Semi-
supervised
learning

Unsupervised
learning

Input type Labelled data A mixture of
labelled and
unlabelled data

Unlabelled data

Accuracy High Mid Low

Complexity
of the
algorithm

Low Mid High

Types of
algorithm

Regression and
classification

Regression,
classification,
clustering, and
association

Clustering and
association

Ding et al. 10.3389/fdmed.2023.1085251
2.2. Classification of AI

There are many approaches whereby AI can be achieved;

different types of AI can achieve different tasks, and researchers

have created different AI classification methods.

AI is a generic term for all non-human intelligence. As

Figure 1 shows, AI can be further classified as weak AI and

strong AI. Weak AI, also called narrow AI, uses a program

trained to solve single or specific tasks. The AI of today is mostly

weak AI. Examples include reinforcement learning, e.g.,

AlphaGo, and automated manipulation robots; natural language

processing, e.g., Google translation, and Amazon chat robot;

computer vision, e.g., Tesla Autopilot, and face recognition; data

mining, e.g., market customer analysis and personalised content

recommendation on social media (22). Strong AI refers to the

ability and intelligence of AI equalling that of humans—it has its

own awareness and behaviour as flexible as humans (23). Strong

AI aims to create a multi-task algorithm to make decisions in

multiple fields. Research on strong AI has to be very cautious as

there might be ethical issues, and it could be dangerous. Thus,

there are no strong AI applications up to now.

ML and expert systems are two different subgroups of weak AI.

As shown in Table 1, ML can be further classified as supervised,

semi-supervised and unsupervised learning based on the theory

of the methods. Supervised learning uses labelled datasets for

training, and these labelled datasets are the “supervisor” of the

algorithm. The algorithm learns from the labelled input, and

extracts and identifies the common features of the labelled input

to make predictions about unlabelled input (24). Examples of

supervised learning includes k-nearest neighbors, logistic

regression, random forest, and support-vector machine (25).

Unsupervised learning, on the contrary, works on its own to find
FIGURE 1

Schematic diagram of the relationship between AI, strong AI, weak AI, expert-
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the various features of unlabelled data (26). Semi-supervised

learning lies between those two, which utilises a small amount

labelled data together with a large amount of unlabelled data

during training (27). Recently, a new method called weakly-

supervised learning became increasingly popular in the AI field

to alleviate labelling costs. In particular, the object segmentation

task only uses image-level labels (i.e., only knowing what objects

are in the images) instead of object boundary or location

information for training (28).

Deep learning is currently a very prominent research area and

forms a subset of ML. It can involve both supervised and

unsupervised learning. As Figure 2 shows, “deep” represents an

artificial “neural network” consisting of a minimum of three

nodal layers—input, multiple “hidden”, and output layers such

that each layer consists of various numbers of interconnected
based systems, machine learning, deep learning and neural network (NN).
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nodes (artificial neurons) whereas each node x has an associated

weight (wi) and biased threshold (t) from m decisive factors,

given by its own (simplified) linear regression model . The

weight is assigned when there is an input of the node. If
Pm

i¼1 wixi þ t � 0, then the output = 1, meaning the data is

passed to another node in another layer. The process of passing

data from one layer to the next defines the neural network as a

feedforward network, similar to a decision tree model.

As mentioned above, a deep neural network can extract

features from the imported data, which does not require human

intervention. Instead, it can learn those features from large

datasets. On the other hand, expert systems require human

intervention to learn, which indeed tuning the wi and t

manually. So, less data is required.

Neural networks (NNs) are biologically inspired networks that

can be regarded as the pillars of deep learning algorithms. There

are different variations of NNs, among which the most

important types of neural networks are artificial neural networks

(ANNs), convolution neural networks (CNNs), and generative

adversarial networks (GANs).
2.2.1. ANN
ANN comprises a group of neurons and layers, as illustrated in

Figure 2. As mentioned above, this model is a basic model for deep

learning, consisting of a minimum of three layers. The inputs are
FIGURE 2

Schematic diagram of deep learning.
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processed only in the forward direction. Input neurons extract

features of input data from the input layer and send data to

hidden layers, and the data goes through all the hidden layers

successively. Finally, the results are summarised and shown in

the output layer. All the hidden layers in ANN can weigh the

data received from previous layers and make adjustments before

sending the data to the next layer. Each hidden layer acts as an

input and output layer, allowing the ANN to understand more

complex features (29).
2.2.2. CNN
CNN is a type of deep learning model mainly used for image

recognition and generation. The mean difference between ANN

and CNN is that CNN consists of convolution layers, in addition

to the pooling layer and the fully connected layer in the hidden

layers. Convolution layers are used to generate feature maps of

input data using convolution kernels. The input image is folded

by the kernels completely. It reduces the complexity of images

because of the weight sharing by convolution. The pooling layer

is usually followed by each group of convolution layers, which

reduces the dimension of feature maps for further feature

extraction. The fully connected layer is used after the convolution

layer and pooling layer. As the name indicates, the fully

connected layer connects to all activated neurons in the previous

layer and transforms the 2D feature maps into 1D. 1D feature
frontiersin.org

https://doi.org/10.3389/fdmed.2023.1085251
https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org/


Ding et al. 10.3389/fdmed.2023.1085251
maps are then associated with nodes of categories for classification

(30, 31). By using the above-mentioned functional hidden layers,

CNN showed higher efficiency and accuracy in image recognition

compared with ANN.

2.2.3. GAN
GAN is one kind of deep learning algorithm designed by

Goodfellow et al. (32) in 2014. It is an unsupervised learning

method designed to automatically discover patterns from the

input data and generate new data with similar features or

patterns compared with the input data. GAN consists of two

neural networks: a generator and a discriminator. The ultimate

goal for the generator is to generate data such that the

discriminator cannot determine whether the data is generated by

the generator or from the original input data. The ultimate goal

for the discriminator is to distinguish the generator-generated

data from the original input data as much as possible. The two

networks compete with each other in GAN, and both networks

improve themselves during the competition.

Since GAN was designed, the network has rapidly spread in AI

applications. They are mainly applied to image-to-image

translation and generating plausible photos of objects, scenes,

and people (33, 34). Wu et al. (35) proposed a new 3D-GAN

framework in 2016 based on a traditional GAN network. 3D-

GAN generates 3D objects from a given 3D space by combining

recent advances in GAN and volumetric convolutional networks.

Unlike a traditional GAN network, it can generate objects in 3D

directly or from 2D images. It gives a broader range of possible

applications in 3D data processing compared with its 2D form.
3. AI in dentistry

As in other industries, AI in dentistry has started to bloom in

recent years. From a dental perspective, applications of AI can be

classified into diagnosis, decision-making, treatment planning,

and prediction of treatment outcomes. Among all the AI

applications in dentistry, the most popular one is diagnosis. AI

can make more accurate and efficient diagnoses, thus reducing

dentists’ workload. On one hand, dentists are increasingly relying

on computer programs for making decisions (36, 37). On the

other hand, computer programs for dental use are becoming

more and more intelligent, accurate, and reliable. Research on AI

has spread over all fields in dentistry.

Although a large amount of journal articles regarding dental AI

have been published, it is still difficult to compare between articles

in terms of study design, data allocation (i.e., training, test, and

validation sets), and model performance (i.e., accuracy,

sensitivity, specificity, F1, AUC {Area Under [the receiver

operating characteristic (ROC)] Curve}, recall). Most articles

failed to report the information mentioned above entirely. Thus,

a minimum information about clinical AI modeling: the MI-

CLAIM (Minimum Information about Clinical Artificial

Intelligence Modeling) checklist has been advocated to bring

similar levels of transparency and utility to the application of AI

in medicine (38).
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3.1. AI in operative dentistry

Traditionally, dentists diagnose caries by visual and tactile

examination or by radiographic examination according to a

detailed criterion. However, detecting early-stage lesions is

challenging when deep fissures, tight interproximal contacts, and

secondary lesions are present. Eventually, many lesions are

detected only in the advanced stages of dental caries, leading to a

more complicated treatment, i.e., dental crown, root canal

therapy, or even implant. Although dental radiography (whether

panoramic, periapical, or bitewing views) and explorer (or dental

probe) have been widely used and regarded as highly reliable

diagnostic tools detecting dental caries, much of the screening

and final diagnosis tends to rely on dentists’ experience.

In operative dentistry, there has been research on the detection

of dental caries, vertical root fractures, apical lesions, pulp space

volumetric assessment, and evaluation of tooth wear (39–44)

(Table 2). In a two-dimensional (2D) radiograph, each pixel of

the grayscale image has an intensity, i.e., brightness, which

represents the density of the object. By learning from the above-

mentioned characteristics, an AI algorithm can learn the pattern

and give predictions to segment the tooth, detect caries, etc. For

example, Lee et al. (45) developed a CNN algorithm to detect

dental caries on periapical radiographs. Kühnisch et al. (46)

proposed a CNN algorithm to detect caries on intraoral images.

Schwendicke et al. (47) compared the cost-effectiveness of AI for

proximal caries detection with dentists’ diagnosis; the results

showed that AI was more effective and less costly.

Several studies mentioned above showed that AI has promising

results in early lesion detection, with accuracy the same or even

better compared with dentists. This achievement requires

interdisciplinary cooperation between computer scientists and

clinicians. The clinicians manually label the radiographic images

with the location of caries while the computer scientists prepare

the dataset and ML algorithm. Finally, clinicians and computer

scientists jointly check and verify the accuracy and precision of

the training results (48).
3.2. AI in periodontics

Periodontitis is one of the most widespread diseases. It is a

burden for billions of individuals and, if untreated, can lead to

tooth mobility and even tooth loss (49). To prevent severe

periodontitis, early detection and treatment are needed. In

clinical practise, periodontal disease diagnosis is based on

evaluating pocket probing depths and gingival recession. The

Periodontal Screening Index (PSI) is frequently used to quantify

clinical attachment loss. However, this clinical evaluation has low

reliability: the screening for periodontal disease is still based on

the experience of dentists, and they may miss localized

periodontal tissue loss (50).

In periodontics, AI has been utilised to diagnose periodontitis

and classify plausible periodontal disease types (51, 52). In

addition, Krois et al. (50) adopted CNN in the detection of
frontiersin.org
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TABLE 2 Examples of AI applications in operative dentistry.

Study Type of data Type of
algorithm

Size of
dataset
(training/
testing)

Accuracy Sensitivity Specificity AUC Other
performances

Vertical root
fracture
detection (40)

Panoramic
radiography

CNN 240/60 0.75 Precision: 0.93;
F1: 0.83

Apical lesion
detection (42)

CBCT images CNN 16/4 0.93 0.88 PPV: 0.87;
NPV: 0.93

Tooth wear
evaluation (43)

Patient’s information
and oral conditions,
intraoral optical
images

SVM, KNN 245 in total SVM: 0.69
KNN: 0.48

Dental caries
detection (45)

Periapical
radiography

CNN 2400/600 0.82–0.89 0.81–0.923 0.83–0.94 0.845–
0.917

Dental caries
detection (46)

Intraoral optical
images

CNN 1891/479 92.5%–

93.3%
0.896–0.957 0.815–0.943 0.955–

0.964

AUC, Area under [the receiver operating characteristic (ROC)] Curve; CBCT, cone-beam computed tomography; CNN, convolutional neural network; KNN, K-Nearest

neighbor; NPV, negative predictive value; PPV, positive predictive value; SVM, support-vector machine.

Ding et al. 10.3389/fdmed.2023.1085251
periodontal bone loss (PBL) on panoramic radiographs. Lee et al.

(53) evaluated the potential usefulness and accuracy of a proposed

CNN algorithm to detect periodontally compromised teeth

automatically. Yauney et al. (54) claimed that periodontal

conditions could be examined by a CNN algorithm developed

by their research group using systemic health-related data

(Table 3).
TABLE 3 Examples of AI applications in periodontics.

Study Type of data Type of
algorithm

Size of
dataset
(training/
testing)

A

Periodontal bone
loss detection (50)

Panoramic
radiography

CNN 1456/353

Severity of
chronic
periodontitis
prediction (51)

Bacterial category in
subgingival biofilms,
Patient’s
information and
oral conditions

NN, RF,
SVM, RLR

692/45

S

R

Periodontally
compromised
teeth detection
(53)

Periapical
radiography

CNN 1392/348 0

Periodontal
condition
examination (54)

Systemic health-
related data,
intraoral optical
images

CNN 284 in total

AUC, Area under the ROC curve; CNN, convolutional neural network; NN, neural netwo

RLR, regularized logistic regression; SVM, support-vector machine.
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3.3. AI in orthodontics

Orthodontic treatment planning is usually based on the

experience and preference of the orthodontists. As every patient

and orthodontist is unique, the treatment is decided mutually by

both sides. Traditionally, it takes a lot of effort for orthodontists

to diagnose malocclusion, as many variables need to be
ccuracy Sensitivity Specificity AUC Other
performances

0.81 0.81 0.81 0.89 F1: 0.78;
PPV: 0.76;
NPV: 0.85

NN: 0.80–
0.93

RF: 0.78–
0.93

VM: 0.78–
0.92

LR: 0.79–
0.92

NN: 0.67–
0.95;

RF: 0.71–
0.96;

SVM: 0.72–
0.97;

RLR: 0.75–
0.97

NN: 0.79–
0.88;

RF: 0.72–
0.83;

SVM: 0.61–
0.82;

RLR: 0.64–
0.81

NN:
0.82–
0.96;
RF:
0.81–
0.96;
SVM:
0.83–
0.96;
RLR:
0.82–
0.97

.734–0.828 0.734–
0.826

0.429 0.677 Precision: 0.271

rk; NPV, negative predictive value; PPV, positive predictive value; RF, random forest;
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considered in the cephalometric analysis, such that it is difficult to

determine the treatment plan and predict the treatment outcome

(55). AI is an ideal tool for solving orthodontic problems. In

orthodontics, AI has applications (Table 4) in treatment

planning and prediction of treatment results, such as simulating

the changes in the appearance of pre- and post-treatment facial

photographs. The impact of orthodontic treatment, the skeletal

patterns, and the anatomic landmarks in lateral cephalograms

(67) can be clearly seen with the aid of AI algorithms, greatly

assisting communication between patients and dentists.

A Bayesian-based decision support system was developed by

Thanathornwong (57) to diagnose the need for orthodontic

treatment based on orthodontics-related data as input. Xie et al.

(58) proposed an ANN model to evaluate whether extractions are

needed from lateral cephalometric radiographs; A similar
TABLE 4 Examples of AI applications in orthodontics.

Study Type of data Type of
algorithm

Size of
dataset
(training/
testing)

Ac

Orthodontic
treatment results
prediction (56)

Facial 3D images DL 137 in total

Diagnosis of the
need for
orthodontic
treatment (57)

Orthodontics-
related oral
condition data

Bayesian
network

800/200 0.

Tooth extraction
determination in
orthodontic
treatments (58)

Orthodontics-
related indices

ANN 180/20

Tooth extraction
determination in
orthodontic
treatments (59)

Cephalometric
variables,
orthodontics-
related indices

ANN 96/60

Cephalometric
landmarks locating
(60, 61)

Lateral
cephalometric
radiography

CNN 1028/283 0.8

Tooth landmark/
axis detection (62)

intra-oral Intraoral
optical images,
CBCT images

NN 2219/865

Skeletal
classification (63)

Lateral
cephalometric
radiography

CNN 5890 in total 0

Tooth surgery/
extraction
determination in
orthodontic
treatments (64)

Lateral
cephalometric
radiography,
orthodontics-
related indices

ANN 204/112 0.

Tooth
segmentation (65)

3D models from
intraoral scanner

CNN 1600/400 0.9

Tooth and alveolar
bone segmentation
(66)

CBCT images CNN 3172/1359

A
bo

3D, three-dimensional; AUC, Area under the ROC curve; ANN, artificial neural networ

DL, deep learning; NN, neural network; ICC, intraclass correlation coefficient.
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evaluation system was proposed by Jung et al. (59). Apart from

the application in predicting the extractions needed for

orthodontic purposes, AI has been adopted to locate

cephalometric landmarks. Park et al. (60, 61) demonstrated a DL

algorithm for the automatically identifying cephalometric

landmarks on radiographs with a high accuracy. Bulatova (68)

et al. and Kunz et al. (69) developed similar AI algorithms, with

accuracies comparable with human examiners in identifying

those landmarks. An automatic system for skeletal classification

using lateral cephalometric radiographs was proposed by Yu

et al. (63).

Besides locating multiple cephalometric landmarks and

classification, AI systems have been used in orthodontic

treatment planning. Choi et al. (64) proposed an AI model to

judge whether surgery is needed using lateral cephalometric
curacy Sensitivity Specificity AUC Other
performances

N/A

93–0.96 0.94–0.96 0.94–1 0.91

0.8

0.93 ICC: 0.97–0.99

04–0.962

Average errors:
0.37 mm (landmark
detection); 3.33° (axis

detection)

.8951–
0.964

0.8427–
0.9459

0.9213–
0.9729

0.889–
0.991

91–0.96 ICC: 0.97–0.99

80–0.986 F1: 0.942

Tooth:
0.915
lveolar
ne: 0.93

Tooth: 0.921;
Alveolar

bone: 0.935

k; CBCT, cone-beam computed tomography; CNN, convolutional neural network;

frontiersin.org

https://doi.org/10.3389/fdmed.2023.1085251
https://www.frontiersin.org/journals/dental-medicine
https://www.frontiersin.org/


Ding et al. 10.3389/fdmed.2023.1085251
radiographs. It looks like most of the orthodontic applications are

on landmarking identification and treatment planning, which are

tedious procedures for orthodontists. A basic task for orthodontic

treatment planning is to segment and classify the teeth. AI has

also been used for these purposes on multiple sources, such as

radiographs and full-arch 3D digital optical scans (65, 66). Cui

et al. proposed several AI algorithms to automatically segment

teeth on a digital teeth model scanned by a 3D intraoral scanner

(65) and CBCT images (66, 70). In addition to tooth

segmentation, they also segmented alveolar bone, the efficiency

exceeded the radiologists’ work (i.e., 500 times faster). The paper

also claimed that the algorithm works well in challenging cases

with variable dental abnormalities (66).
3.4. AI in oral and maxillofacial pathology

Oral and Maxillofacial Pathology (OMFP) is a specialty for

examining pathological conditions and diagnosing diseases in the

oral and maxillofacial region. The most severe type of OMFP is

oral cancer. Statistics from the World Health Organization

(WHO) show that every year there are over 657,000 patients

diagnosed with oral cancer globally, among which there are more

than 330,000 deaths (71). In OMFP, as shown in Table 5, AI has

been researched mostly for tumour and cancer detection based

on radiographic, microscopic and ultrasonographic images.

Besides, abnormal locations can also be detected from

radiographs by AI (72), such as nerves in the oral cavity,

interdigitated tongue muscles, and parotid and salivary glands.

CNN algorithms were demonstrated to be a suitable tool for the

automatically detecting cancers (73, 78). It is worth mentioning

that AI also plays a role in managing cleft lip and palate in risk
TABLE 5 Examples of AI applications in oral and maxillofacial surgery.

Study Type of data Type of
algorithm

Size of
dataset
(training/
testing)

Mandibular third
molar and IAN
positional
relationship
detection (72)

Panoramic
radiography

CNN
(ResNet-50)

571 in total

OSCC diagnosis (73) Confocal laser
endomicroscopy
images

CNN 116 video
sequences

OPMDs and OSCC
diagnosis (74)

Intraoral optical
images

CNN 980 in total

OPMDs diagnosis
(75)

OCT Images ANN, SVM 128/271 sets

OPMDs diagnosis
(76)

OCT Images CNN 6/15 sets

Ameloblastoma and
KCOT diagnosis (77)

Panoramic
radiography

CNN 400/100

AUC, Area under the ROC curve; CNN, convolutional neural network; IAN, inferior alveo

OCT, optical coherence tomography; OPMD, oral potentially malignant disorder; OSC
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prediction, diagnosis, pre-surgical orthopaedics, speech

assessment, and surgery (79).

Early detection and diagnosis of various mucosal lesions are

essential to classify benign or malignant. Surgery resection is

required for malignant lesions. However, some of the lesions

behave similarly in appearance, thus requiring the diagnosis by

biopsy slides and radiographs. Pathologists diagnose disease by

observing the morphology of stained specimens on glass slides

using microscopic (80). It is tedious work that requires much of

effort for pathologists. Of all the biopsies that need to be

examined, only around 20% of them are found to be

malignancies. Thus, AI can be a suitable tool for aiding

pathologists in this task.

Warin et al. (74) used a CNN approach to detect oral potentially

malignant disorders (OPMDs) and oral squamous cell carcinoma

(OSCC) in intraoral optical images. In addition to intraoral optical

images, OCT has been used in identify benign and malignant

lesions in the oral mucosa. James et al. (75) used ANN and SVM

models to distinguish malignant and dysplastic oral lesions. Heidari

et al. (76) used a CNN network, AlexNet (17), to distinguish

normal and abnormal head and neck mucosa. Abureville et al. (73)

used a CNN algorithm to automatically diagnose oral squamous

cell carcinoma (SCC) from confocal laser endomicroscopy images;

the study showed that the CNN algorithm used in the study was

especially suitable for early diagnosis of SCC. Poedjiastoeti et al.

(77) also used a CNN algorithm to identify and distinguish

ameloblastoma and keratocystic odontogenic tumour (KCOT). The

two oral tumours with similar features in radiographic images. By

comparing the computer-generated results with the biopsy results,

the accuracy of the CNN algorithm was found to be 83% and the

diagnostic time 38 s. These values were similar to those of oral and

maxillofacial specialists.
Accuracy Sensitivity Specificity AUC Other
performances

0.7232–
0.8065

0.8462–
0.8667

0.5532–0.75 0.66–
0.83

Precision: 0.62–0.83;
F1: 0.61–0.73

0.883 0.866 0.9 0.96

0.73–0.99 0.83–0.99 0.71–
1

Precision: 0.63–0.98;
F1: 0.68–0.98

0.52–0.84 0.83–0.93 0.69–0.82 PPV: 0.51–0.95;
NPV: 0.76–0.96

0.82 1 0.7

0.83 0.818 0.833 0.88 Diagnostic time: 38 s

lar nerve; KCOT, keratocystic odontogenic tumour; NPV, negative predictive value;

C: oral squamous cell carcinoma; PPV, positive predictive value.
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3.5. AI in prosthodontics

In prosthodontics, a typical treatment process to prepare a

dental crown includes tooth preparation, impression taking, cast

trimming, restoration design, fabrication, try-in, and

cementation. The application of AI in prosthodontics mainly lies

in the restoration design (Table 6). CAD/CAM has digitalised

the design work in commercialized products, including CEREC,

Sirona, 3Shape, etc. Although this has dramatically increased the

efficiency of the design process by utilising a tooth library for

crown design, it still cannot achieve a custom-made design for

individual patients (81). With the development of AI, Hwang

et al. (82) and Tian et al. (83) proposed novel approaches based

on 2D-GAN models to generate a crown by learning from

technicians’ designs. The training data was 2D depth maps

converted from 3D tooth models. Ding (84) reported a 3D-

DCGAN network in the crown generation, which utilised 3D

data directly in the crown generation process, the morphology of

generated crowns was similar compared with natural teeth.

Integrating AI with CAD/CAM or 3D/4D printing can achieve a

more desirable workflow with high efficiency (88). AI has also

been used in shade matching (85) and debonding prediction of

CAD/CAM restorations (86).

Apart from fixed prosthodontics, the design in removable

prosthodontics is more challenging as more factors and

variables need to be considered. No ML algorithm is available

for the purpose of designing removable dentures while several

expert (knowledge based) systems have been introduced (89–

91). Current ML algorithms are more focused on assisting the

design process of removable dentures, e.g., classification of
TABLE 6 Examples of AI applications in prosthodontics.

Study Type of
data

Type of
algorithm

Size of
dataset
(training/
testing)

Accur

Crown generation
(82)

Intraoral
scanner/
depth map

GAN 3070/243
(Teeth)

Crown generation
(83)

Intraoral
scanner/
depth map

GAN 700/80 (Teeth)

Crown generation
(84)

Intraoral
scanner

3D–DCGAN 600/12

Shade matching
(85)

CIE LAB
color space
number

BPNN 39/4

Resin composite
crowns debonding
prediction (86)

optical
images of
abutments

CNN 6480/2160 0.98

Dental arch
classification (87)

Intraoral
optical
images

CNN 1016/168 0.995–0

AUC, Area under the ROC curve; BPNN, back-propagation neural network; CIE, inte

generative adversarial network; 3D-DCGAN, 3-dimensional deep convolutional gener
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dental arches (87), and facial appearance prediction in

edentulous patients (92).
4. Discussion

Given the success of AI, it has been proved that AI can learn

beyond human expertise. In fact, the development of AI cannot

be achieved without the development of computer technology

(software), computing capacity (hardware), and large database

(input data). ML tasks involving 3D models require high

computational power to train the algorithm. Current

computational power may still insufficient to work directly on

3D data to perform classification or regression tasks compared

with well-studied 2D image and video-based tasks. Millions of

point clouds or meshes in a 3D model cannot be loaded to GPU

at once. Sampling and representations of a 3D model (i.e., depth

map, voxels, point cloud, and mesh) are often used to reduce the

computation burden, such that the details would be sacrificed

during the transition. In addition to the massive amount of

digitalised medical data used for training ML models, which did

not exist previously, the development of wearable devices also

contributes to the acquisition of medical big data. Thus, the

evolution of AI applications is greatly dependent on the AI

algorithm, computational power, and digitalised training data.

Evidence-Based Dentistry (EBD), a more specific branch of

Evidence-Based Medicine (EBM), is defined as “an approach to

oral health care that requires the judicious integration of

systematic assessments of clinically relevant scientific evidence,

relating to the patient’s oral and medical condition and history,
acy Sensitivity Specificity AUC Other performances

The proposed method had
a lower ΔE compared with
traditional visual shade
matching.

5 1 0.998 Precision: 0.97;
F1: 0.985

.997 1 0.98–
0.99

Precision: 0.25
F1: 0.4

rnational commission on illumination; CNN, convolutional neural network; GAN,

ative adversarial network.
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with the dentist’s clinical expertise and the patient’s treatment needs

and preferences” (93). Both EBM and EBD are regarded as the gold

standard for the decision-making of health professionals. While

ML models learn from human expertise, this can be seen as

another useful tool for health professionals in multiple stages of

clinical cases.

On one hand, ML could assist clinicians in storing and

analysing constantly updated medical knowledge and patient-

related data. ML algorithms are adept at finding patterns in

patients’ diagnostic data, improving current medical treatment,

discovering new drugs, precision medicine, and minimising

human error. EBD has a similar aim, but ML can finish it more

quickly as it uses existing data, while EBD usually needs

randomized controlled trials to achieve those aims. On the other

hand, medical data are challenging to handle since the diagnosis

is usually based on multiple sources. ML requires a large amount

of data for training which may be subject to systematic bias or

be inaccessible; these could influence the ultimate result. It is not

easy to improve the precision of a ML model by only increasing

the training data instead of increasing the quality of the data.

Also, ML cannot account for the differing diagnoses by different

clinicians using different data sources.

In addition, medical data are often stored within isolated,

individualised, and limitedly interoperable systems due to

concerns such as ethical problems, data protection, and

organisational barriers. The research on federated learning (94)

of ML is a potential way to solve data privacy protection

problems. Besides, professional personnel are usually required to

label dental and medical data. These limitations lead to the

datasets lacking structure and insufficient, at least when

compared with other AI fields (95). Few-shot learning has been

studied to tackle this problem (96).

To use dental and medical data for ML training, one must be

very careful with its complex, sensitive, and limited validation

methods (97). Dental and medical data from electronic records

are usually of low integrity. The data often lack of systematic

allocation and is not at random, e.g., data from the hospital may

have a risk of being overly sick; data collected from wearable

devices may have a risk of being overly healthy. Furthermore,

healthcare system level in different countries or regions is

unbalanced. Data from one single country or region could

possibly lead to the training result being precise but not accurate

and cannot apply to countries with different healthcare system

conditions. AI applications trained by such data will be biased

(95). ML using such long-tailed data have been studied to

minimise its influence (98). Besides, the outcomes of AI are

often not readily applicable. The single output provided by most

contemporary medical AI applications will only partially inform

the required and complex decision-making of clinical

applications. Unlike EBD, ML does not have a system to monitor

the quality of the input medical data and the degree of bias. EBD

has a more macroscopic awareness, and decisions are usually

made based on several data sources to minimise bias. Due to the

above-mentioned constraints, some clinicians have reserved their

opinion on ML due to its “black box” mechanism, which the

rationale for getting to the specific results cannot be explained.
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Although explainable AI has been studied for this purpose (99),

EBD is straightforward and has a more transparent mechanism

(100).

EBD and ML have their own advantages and disadvantages. ML

is a new approach in the medical field to improve diagnosis and

predict treatment outcomes by discovering patterns and

associations amongst medical datasets. However, while current ML

applications mainly rely on the same type of dataset, ML is capable

of acquiring information from EBD, which uses different kinds of

data for diagnosis. EBD can also benefit from the addition of ML

in facilitating the discovery of the underlying connection between

medical data and disease and in providing a better and

individualised diagnosis. EBD and ML are complementary to serve

clinicians better; clinicians can refer to both to maximise their

advantage and apply them to medical practise.
5. Conclusion

New technologies are developed and adopted rapidly in the

dental field. AI is among the most promising ones, with features

such as high accuracy and efficiency if unbiased training data is

used and an algorithm is properly trained. Dental practitioners

can identify AI as a supplemental tool to reduce their workload

and improve precision and accuracy in diagnosis, decision-

making, treatment planning, prediction of treatment outcomes,

and disease prognosis.
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