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Clinically applicable artificial 
intelligence system for dental 
diagnosis with CBCT
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Dania Tamimi3, Secil Aksoy4, Eugene Shumilov1, Alex Sanders1 & Kaan Orhan5,6*

In this study, a novel AI system based on deep learning methods was evaluated to determine its 
real-time performance of CBCT imaging diagnosis of anatomical landmarks, pathologies, clinical 
effectiveness, and safety when used by dentists in a clinical setting. The system consists of 5 modules: 
ROI-localization-module (segmentation of teeth and jaws), tooth-localization and numeration-
module, periodontitis-module, caries-localization-module, and periapical-lesion-localization-module. 
These modules use CNN based on state-of-the-art architectures. In total, 1346 CBCT scans were 
used to train the modules. After annotation and model development, the AI system was tested for 
diagnostic capabilities of the Diagnocat AI system. 24 dentists participated in the clinical evaluation 
of the system. 30 CBCT scans were examined by two groups of dentists, where one group was aided 
by Diagnocat and the other was unaided. The results for the overall sensitivity and specificity for aided 
and unaided groups were calculated as an aggregate of all conditions. The sensitivity values for aided 
and unaided groups were 0.8537 and 0.7672 while specificity was 0.9672 and 0.9616 respectively. 
There was a statistically significant difference between the groups (p = 0.032). This study showed that 
the proposed AI system significantly improved the diagnostic capabilities of dentists.

Radiological examination is an essential part of patient management in dentistry. It is frequently used to supple-
ment and aid clinical diagnosis of pathology related to teeth and adjacent  structures1–4. Cone-beam computed 
tomography (CBCT) was proposed for maxillofacial  imaging5,6 during the last decade and is now becoming 
increasingly popular for such use. It offers distinct advantages including lower radiation doses, compared to 
medical computed tomography (CT), and the potential of importing and exporting individualized, digital imag-
ing and communications in medicine (DICOM) and overlap-free reconstructed data for other  applications4–7. 
CBCT can supply high-resolution three-dimensional (3D) images without distortion and superimposition of 
bone and other dental structures that can be seen in conventional  radiography8,9.

Several studies have compared the diagnostic accuracy of CBCT with conventional and digital panoramic 
and periapical  radiography10–14. CBCT has been shown to significantly increase the detection rate of tooth root 
canal spaces and periapical areas for the evaluation of dental infection and pathology compared to conventional 
 imaging15–17. This suggests that CBCT enhances the recognition of periapical bone lesions and offers improved 
diagnostic accuracy, treatment planning, and thus prognostic outcomes. These and other possibilities along with 
increasing access to CBCT imaging for dentists are allowing the transition from 2 to 3D imaging in everyday 
dental  practice10–17.

Previous studies revealed that CBCT has a wide application in the field of  dentistry18–20. However, there is no 
standard curriculum or protocol for providing training regarding CBCT. The current status of awareness and 
knowledge concerning CBCT amongst dental practitioners is not known  precisely21.

There have been limited works in the literature studying the knowledge and attitude of dentists toward 
advanced dentomaxillofacial imaging. The literature showed that there is a lack of knowledge regarding  CBCT22,23. 
It should also be pointed out that studying CBCT should take more time in dental school  curricula21. Reddy 
et al.23 in their work defined very low awareness amongst the dentists regarding CBCT applications, which can 
be interpreted as a lack of experience in that area. Thus, computer-aided systems have been developed to assist 
in medical and dental imaging  diagnosis24–27.
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Along with the expansion of CBCT, radiation-related effects of CBCT imaging raise concerns about its use 
in dentistry. CBCT is associated with a higher radiation dose compared to panoramic and intraoral imaging, 
but a lower dose compared to conventional  tomography28–30. Therefore radiation risk assessment is in place. The 
effective dose recommended by ICRP (International Commission on Radiological Protection) should be kept 
accordingly to the principles of ALARA (As Low as Reasonably Achievable) and ALADA (As Low as Diagnosti-
cally Acceptable). It should also be stated that the necessity of CBCT scanning must be indication-oriented and 
patient  specific29.

Convolutional Neural Networks (CNN) are most commonly used for object detection and segmentation. 
There are several studies available with deep-learning methods, including CNNs, to assist clinicians in dentistry. 
CNNs are used clinically for, apical lesion  detection31, detection of root  fractures32, detection of periodontal 
 disease33, cystic  lesions34, caries  detection35, staging of lower third molar  development36, tooth  detection37,38, 
diagnosis of jaw  lesion39, and other pathologies  detection40. Artificial intelligence (AI) provides an added value 
and decision support tool for such medical imaging.

There are a few critical success factors to measure the gap between actual performance and expected achieve-
ment. AI systems must apply to real-world situations and be designed for clinical evaluation and deployment. 
Furthermore, an important part of the development and integration of these AI systems is that their functionality 
(ease of use, speed, and accuracy) reaches or exceeds the clinicians’ expertise and expectations.

In this study, a novel AI system, which is based on deep learning methods, was tested for diagnostic capabili-
ties. Firstly, the clinical performance, accuracy, and time required for diagnosis were evaluated. The real-time per-
formance of CBCT imaging was evaluated on the diagnosis of anatomical landmarks and pathologies. Secondly, 
its clinical effectiveness and safety were tested when used by dentists in a clinical setting. The null hypothesis of 
this study was that there is no significant difference between aided and unaided groups using the proposed AI 
system (Diagnocat) for CBCT imaging.

Results
Inter-observer consistency. Table 1 shows the ICCs between observers which ranged from 0.59 to 0.99. 
There was a high inter-observer agreement, while a high ICC and low CV demonstrated that the procedure was 
standardized between the evaluations and measurements of the observers. No statistical differences were found 
among observers’ evaluations (p > 0.05) except for caries, periodontal ligament (PDL) widening along the root, 
and periodontal bone loss diagnosis (p < 0.05).

The results of the AI evaluation are shown in Tables 2 and 3. Table 2 shows the overall sensitivity and specific-
ity for the system and dentomaxillofacial radiology examiners. Outcome counting for Table 4 was summarized 
over the case, tooth, and condition, whilst grouped by the participants. Both sensitivity and specificity were 
recorded as higher for human examiners. Overall sensitivity values for human examiners ranged between 0.9318 
and 0.9438 while the value for this AI system was 0.9239. Overall specificity values for ground truth examiners 
were between 0.9899 and 0.9946 while the value for this AI system was 0.9899. Table 3 shows sensitivity and 
specificity values for the system given per condition. The results of specificity values were high, with the low-
est being 0.94 when determining missing tooth. Sensitivity values were condition-dependent, with the lowest 
values being around 0.7 for some difficult or subjective conditions such as endodontic treatment (missed canal, 
short filling, voids in root filling), and signs of dental caries (complex to diagnose using the CBCT). Notably, 
Diagnocat struggled to detect very rare anatomical configurations of the tooth e.g., 5 canals or 4 roots. Finally, 
a rare subtype of the periapical lesion, periapical radiopacity, did not register in the dataset. Yet, this subtype 
currently is not claimed as a diagnostic capability of the Diagnocat system.

In Table 5 the results of the study are presented. Sensitivity and specificity values are shown for aided versus 
unaided reads for each condition. The lowest sensitivity values for the aided group were 0.1818 and 0.3535, 
detecting the roots (n = 4) and periodontal bone loss. The lowest specificity value was 0.8111 for periodontal 
bone loss. For the unaided group, the lowest sensitivity value was 0.2045 for periapical lesion and poorly defined 
radiolucency, the smallest specificity value was 0.7973 for caries. The highest sensitivity and specificity for both 
groups was 1 for implant detection. The results for the overall sensitivity and specificity for aided and unaided 
groups, calculated as an aggregate of all conditions. The sensitivity values for aided and unaided groups were 
0.8537 and 0.7672 while specificity was 0.9672 and 0.9616 respectively. There was a statistically significant dif-
ference between the groups (p = 0.032). Statistical tests revealed the group aided by Diagnocat had a superior 
performance in comparison to ground truth.

The average time for the aided group was 17.55 min while it took 18.74 min for the unaided respectively. 
There was a significant difference between the two groups (p = 0.032). Statistical tests revealed that the AI-aided 
group had a lower evaluation period in comparison with the unaided group (p = 0.032).

Discussion
The integration of AI into healthcare has dramatically accelerated in the past decade. The use of deep learning 
advanced almost synchronously in both medical and dental  fields9. Previous studies in dentistry focused on 
image-processing algorithms to achieve high-accuracy classification and segmentation in dental radiographs. 
They used mathematical morphology, active contour models, level-set methods, Fourier descriptors, textures, 
Bayesian techniques, linear models, or binary support vector  machines27,41. However, image components are 
usually obtained manually using these image-enhancement algorithms. The deep learning method used in this 
AI system (Diagnocat) yielded fairer outcomes by automatically obtaining image features. The objects detected 
in an image are classified into a pretrained network without preliminary diagnostics, as a result of processes such 
as filtering and subdivision. With its direct problem-solving ability, deep learning is used extensively in medicine. 
Deep learning methods using CNNs are a cornerstone of medical image  analysis42. Such methods have been 
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preferred in AI studies in dental radiology as well. Tooth detection, identification, and numeration are the first 
diagnostic steps in dental radiography. Image-processing algorithms have been developed with classification and 
segmentation in dental radiographs using mathematical morphology, active contour, or level-set methods. A 
previous study used Bayesian classification for generating an automated dental identification system to classify 
and identify teeth in bitewing  radiographs25. Similarly, another study recommended a tooth classification and 
numbering system to efficiently segment, classify, and number teeth using an image enhancement technique in 
bitewing  radiographs43. Tooth detection and numbering have been researched intensively during the last few 

Table 1.  Inter-observer agreement among observers according to evaluated variables. CV, coefficient of 
variation; ICC, intraclass correlation coefficient. *Indicates significant difference p-value less than 0.05.

Groups

Observers (mean)

ICC CV (%)

Artificial crown 0.942 2.3

Canals N = 1 0.941 2.11

Canals N = 2 0.952 2.01

Canals N = 3 0.962 2.05

Canals N = 4 0.962 2.05

Canals N = 5 0.962 2.05

Caries signs 0.592* 7.02*

Crown defect over 50pct 0.99 2.04

Endodontically treated tooth 0.988 2.05

Filling 0.99 1.05

Impaction 0.952 2.07

Implant 0.999 2.05

Missed canal 0.925 2.01

Missing 0.999 2.05

Overfilling 0.98 2.02

PDL widening along the root 0.690* 6.04*

Periapical lesion 0.887 2.98

The periapical lesion, PDL widening 0.589 6.02

Periapical lesion, poorly circumscribed radiolucency 0.555 6.64

Periapical lesion, radiopacity 0.889 2.8

Periapical lesion, well-circumscribed radiolucency 0.85 2.08

Periodontal bone loss 0.629* 5.80*

Periodontal bone loss, mild 0.78 4.8

Periodontal bone loss, moderate 0.76 4.8

Periodontal bone loss, severe 0.777 3.8

Pontic 0.887 2.76

Post and core 0.999 2.05

Roots N = 1 0.999 2.05

Roots N = 2 0.999 2.05

Roots N = 3 0.999 2.05

Roots N = 4 0.962 2.05

Short filling 0.875 2.02

Voids present in the root filling 0.887 2.56

Table 2.  Cross-condition sensitivity and specificity for the system and dentomaxillofacial radiology 
examiners.

Participant Sensitivity Specificity

Diagnocat 0.9239 0.9899

DMFR-1 0.9411 0.9939

DMFR-2 0.9438 0.9931

DMFR-3 0.9318 0.9913

DMFR-4 0.9337 0.9946
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decades mainly using threshold and region-based techniques. CNN as a popular deep learning method has been 
used to detect and number teeth as well. It was also emphasized that localization of teeth is important for dental 
image applications, similarly to our  results44. In this paper, the authors suggested an original teeth localization 
technique for periapical radiographs using oriented tooth detection using a CNN. The results of this study showed 
that the proposed method is effective to localize teeth successfully.

Similar CBCT studies were performed and reported in the literature. One of them considered automatic 
teeth classifying system using 7 types of axial slice CBCT images using a  CNN37. The authors concluded that 
a 7-tooth type classification system can be used efficiently for automatic dental  charting37. Another study also 
described a CNN model modified with AlexNet architecture for tooth detection in panoramic  radiographs38. 
This study defined mouth gap detection that showed the possible placement of teeth for preprocessing steps. 
It was concluded that this model could be efficiently used for the detection of teeth. These findings are in line 
with our study. Another  study45 used the sea mask region-based CNN method with transfer learning strategies 
while  another46 used a fully deep learning mask region-based convolutional neural network (R-CNN) method 
implemented through a fine-tuning process for automated tooth segmentation. This technique showed high 
performance for automatic teeth segmentation on panoramic radiographs. Similarly, one more study also used 
the state-of-the-art Faster R-CNN model of tooth detection and  numbering47. A recently published paper pro-
posed a deep learning CNN model with a VGG16 network structure for the teeth detection and classification of 
periapical  radiographs27. The CNN method is similar to our study, which can also interfere with deep learning 
methods and can be used for both training and transfer learning.

In 2018 we published our AI algorithm (later called Diagnocat)48 that presented coarse-to-fine volumetric 
segmentation of teeth in CBCT images which were efficient for handling large volumetric images for tooth 
segmentation. Diagnocat’s approach in diagnosing is based on a deep convolutional neural network using a 
U-net-like  architecture49. The problem formulation in the study in terms of machine learning tasks was semantic 
segmentation, including segmenting background and periapical pathology. Specificity and sensitivity metrics 
were used to evaluate diagnostic performance and to measure the localization capabilities of our model, binary 

Table 3.  Sensitivity and specificity by condition for the AI system (Diagnocat).

Condition Sensitivity Specificity

Artificial crown 0.9546 0.9963

Canals N = 1 0.9864 0.9661

Canals N = 2 0.7759 0.9927

Canals N = 3 0.9531 0.9647

Canals N = 4 0.654 0.9952

Canals N = 5 N/A 0.9998

Caries signs 0.7285 0.9953

Crown defect over 50% 0.8734 0.9975

Endodontically treated tooth 0.9676 0.9953

Filling 0.9721 0.9921

Impaction 0.9137 0.9995

Implant 0.9727 0.9997

Missed canal 0.6695 0.9974

Missing 0.9824 0.9405

Overfilling 0.7831 0.9973

PDL widening along the root 0.8794 0.9863

Periapical lesion 0.8383 0.9953

The periapical lesion, PDL widening 0.7587 0.9807

Periapical lesion, poorly circumscribed radiolucency 0.6957 0.9942

The periapical lesion, well-circumscribed radiolucency 0.729 0.9974

Periodontal bone loss 0.9489 0.9661

Periodontal bone loss, mild 0.9321 0.9742

Periodontal bone loss, moderate 0.9111 0.9866

Periodontal bone loss, severe 0.9286 0.996

Pontic 0.9101 0.9998

Post and core 0.75 0.9975

Roots N = 1 0.9593 0.9888

Roots N = 2 0.9181 0.9778

Roots N = 3 0.964 0.9786

Roots N = 4 0.0 1.0

Short filling 0.6981 0.9937

Voids present in the root filling 0.7329 0.9957



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15006  | https://doi.org/10.1038/s41598-021-94093-9

www.nature.com/scientificreports/

voxel-wise intersection over union (IoU) of the ground truth mask and prediction were used. In the current study, 
we tested the diagnostic performance of this AI system compared to the experienced dentomaxillofacial exam-
iners. Then, we compared the diagnostic performance and required diagnostic time within aided and unaided 
groups in a real-time clinical environment. To the best of our knowledge, there is no study to assess the real-
time clinical performance of CBCT imaging and diagnosis to demonstrate the clinical safety and effectiveness 
of its use. In the first study, ground truth set-up results showed the sensitivity and specificity values for human 
examiners in between 0.9318 and 0.9438 while the value for this AI system was 0.9239. The inter-observer vari-
ations among human examiners for the aforementioned significant variables can be interpreted as the diagnosis 
of these variables does not agree among human observers. For instance, caries diagnosis is a clinical judgment 
regarding the presence of the disease. Caries lesion detection is the identification of caries signs, clinically or 
radiographically. However, dentists in general practice should keep in mind that even a clinically sound tooth may 
contain extensive dentinal caries. Bitewing radiography has a low sensitivity for the detection of early proximal 
lesions that extends only into the enamel. This leads to the assumption that early lesions (extending in the outer 
enamel histologically) will usually remain  undetected50,51. Moreover, caries detection is not a primary indication 
for a CBCT scan. The SEDENTEXCT Panel in 2011 concluded that the evidence did not support the clinical use 
of CBCT for caries detection and diagnosis. Nonetheless, CBCT examinations performed for other purposes 
should be carefully examined for caries lesions shown fortuitously when performing a clinical  evaluation52. Thus, 
these fine anatomical details together with caries and periodontal bone loss evaluations are prone to different 
diagnoses amongst human observers. However, it should be stated that radiographic evaluations performed 
with the Diagnocat are found to be more compatible and accurate in detecting dental caries in CBCT images.

For the second study, it was shown that the AI-aided group had superior performance compared to the 
unaided group. The group with AI support had 0.85 averaged by condition sensitivity value and 0.97 specificity 
value as opposed to 0.77 and 0.96 for the unaided group, correspondingly. AI-system reduced the average time 
needed to assess one CBCT by 1.19 min (6.78%) due to automatic preparation of dental charts and electronic 
dental records together with automated pathology detection. Dentists, as well as radiologists, can use AI systems 
as an ancillary tool to enhance the accuracy of diagnosis, aid treatment planning, and predict treatment outcomes. 
The use of decision support systems as a second opinion can improve the accuracy of diagnosis within a shorter 
time frame. Regarding clinical documentation, reporting is generally time-consuming for radiologists. Besides, 
the report generation task is usually completed by the end of the workflow, which may lead to errors from pre-
ceding steps. Moreover, a lack of standardization has led to a variation in documentation among radiologists. 
Combined with appropriate training, AI can ensure that radiologists produce highly valuable data, improving 
the efficiency and accuracy of documentation. By reducing inefficiencies, radiologists can have a broader and 
deeper impact on patient care.

In this study, the results showed that the specificity and sensitivity of the evaluation process were improved 
in the AI-aided group and the required diagnosis time was reduced. Since examiners’ evaluations were taken 
as the ground truth, this comparison is biased in favor of human examiners. Moreover, the difference in overall 
performance seems to be rather small, which we interpreted as possible proof of Diagnocat standalone capability.

Table 4.  Condition descriptions.

Condition Description

Artificial crown A tooth was restored with an artificial crown

Number of canals Number of root canals in a tooth (1–5)

Caries signs Signs of dental caries (cases where caries is certain, and there is a low chance of confusion with a metallic 
artifact or non-contrast filling)

Crown has defect over 50% A crown is largely destroyed: at least 50% of the crown is missing

Endodontically treated tooth A tooth displays signs of previous endodontic treatment

Filling A crown was restored with a filling

Impaction A tooth is impacted (unerupted)

Implant There is an implant in place of a tooth

Missed canal A root canal was missed (not filled) during endodontic treatment. Should be specified only if a tooth was 
endodontically treated

Missing Absence of tooth, implant, and pontic under specified number including both extracted teeth and teeth 
that are not visible in the FoV of an image

Overfilling Filling material is visualized beyond a radiographic apex. Should be specified only if a tooth was endo-
dontically treated

Periapical lesion Presence of inflammatory periapical lesion adjacent to one or more roots of a tooth

Pontic There is a pontic restoration in place of a tooth (either base or middle part)

Post and core A tooth was restored with a post and core restoration

Number of roots Number of roots in the tooth (1–4)

Short filling Root canal filling is short (ends in 2 mm or more from a radiographic apex). Should be specified only if a 
tooth was endodontically treated

Voids present in the root filling A root canal contains voids (spaces that were not filled during previous endodontic treatment). Should be 
specified only if a tooth was endodontically treated
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Nonetheless, the current study has some limitations. The major limitation of this study is its retrospec-
tive design. Additionally, the study population was restricted to only three centers with three different CBCT 
machines. We expect that the classification power of the developed AI system will be enhanced when it is more 
trained and validated on larger patients data from multiple institutions. Furthermore, this AI system can be 
directly used in clinical practice to provide additional information for decision-making. Besides, when generating 
such AI systems, the annotation and segmentation method might take more time and effort. While the ground 
truth is determined by the hybrid approach in this retrospective study, unfortunately, true diagnosis cannot 
be made without histopathological evaluation. Also, although inter-observer variability among observers was 
evaluated in this study, no intra-observer variability was tested due to large database evaluations with various 
anatomy and pathological aspects. Further studies are needed for every pathology one by one. Another limita-
tion for this study is that no attempt was made for the evaluation of confounding factors such as artifacts (beam 
hardening, scattering, motion artifacts, etc.), since beam hardening, motion artifacts may affect the diagnosis. 
As it was stated previously we excluded these conditions from our database.

Within the limitations of the study, we found there was no statistically significant difference between Diag-
nocat and the experienced dentomaxillofacial radiologists (p > 0.05). The results of sensitivity and specificity 
values were also similar between this AI system and the examiners.

Given the rapid advances in AI, it seems likely that radiology and pathology images will be examined at some 
point by a machine. Speech, voice, and text recognition are already aided by computerized systems and software. 
Patient communication and dictation of clinical notes are only a few examples of everyday computerized tasks, 
and their diversity will more likely increase. AI systems have the potential to be used in daily routine dental 
practice. These AI systems will not replace human clinicians on a large scale, but rather will augment the dentists’ 
efforts to care for patients. However, it should be noted that regulators must approve the widespread adoption 
of such AI systems for routine dental use.

Table 5.  Sensitivity and specificity by condition for aided and unaided AI system (Diagnocat).

Condition

Sensitivity Specificity

Aided Unaided Aided Unaided

Artificial crown 0.8337 0.6774 0.9804 0.971

Canals N = 1 0.9544 0.9417 0.9655 0.9515

Canals N = 2 0.793 0.7345 0.9713 0.9632

Canals N = 3 0.828 0.7347 0.9719 0.9666

Canals N = 4 0.7345 0.751 0.9807 0.9719

Canals N = 5 N/A N/A 0.9998 0.9992

Caries signs 0.6693 0.6634 0.8593 0.7973

Crown defect over 50% 0.9088 0.7887 0.9901 0.9812

Endodontically treated tooth 0.9761 0.9476 0.9912 0.9841

Filling 0.9308 0.7771 0.9515 0.9151

Impaction 0.8523 0.5 0.9993 0.9993

Implant 1.0 0.969 1.0 0.9996

Missed canal 0.8233 0.7701 0.9867 0.946

Missing 0.8964 0.8973 0.9403 0.9364

Overfilling 0.7909 0.6199 0.9926 0.9922

PDL widening along the root 0.746 0.2779 0.9803 0.9731

Periapical lesion 0.8304 0.683 0.9388 0.9465

The periapical lesion, PDL widening 0.5161 0.3202 0.9332 0.9542

The periapical lesion, poorly circumscribed radiolucency 0.4318 0.2045 0.9897 0.981

Periapical lesion, well circumscribed radiolucency 0.7135 0.6048 0.9912 0.9817

Periodontal bone loss 0.7239 0.4501 0.8111 0.8358

Periodontal bone loss, mild 0.4783 0.2329 0.8739 0.8782

Periodontal bone loss, moderate 0.4357 0.2148 0.9248 0.943

Periodontal bone loss, severe 0.3535 0.2727 0.9929 0.9878

Pontic 0.9696 0.9087 0.9988 0.9973

Post and core 0.7877 0.7114 0.9846 0.9715

Roots N = 1 0.9559 0.9635 0.9731 0.9558

Roots N = 2 0.8609 0.8304 0.9728 0.9726

Roots N = 3 0.9376 0.9028 0.9712 0.9785

Roots N = 4 0.1818 0.7045 0.9996 0.9986

Short filling 0.8139 0.6285 0.9846 0.9817

Voids present in the root filling 0.7592 0.4938 0.9826 0.9757
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In conclusion, the null hypothesis of this study was rejected as there is a significant difference between aided 
and unaided groups and as the proposed AI system (Diagnocat) significantly improved the sensitivity and speci-
ficity in regards to diagnosing the dental pathologies in comparison to human observers using CBCT imaging. 
Our results look promising qualitatively and quantitatively. Diagnocat can have many uses in the real world, 
ranging from being a decision support system in clinical settings to a helper system for dental practitioners.

Methods
Ethics and information governance. Written informed consent was obtained from all patients before 
CBCT examinations. The research protocol was performed following the principles of the Declaration of Hel-
sinki and was approved by the non-interventional Institutional Review Board (IRB) within the research project 
of the YDU 82-1147 of Near East University, Faculty of Medicine, Health Sciences Ethics Committee (Nicosia, 
Cyprus). Deidentification was performed in line with the Information Commissioner’s Anonymization: manag-
ing data protection risk code of practice (https:// ico. org. uk/ media/ 1061/ anony misati code.pdf), and validated 
by the aforementioned institution. Only deidentified anonymized retrospective data were used for research, 
without the active involvement of patients.

CBCT images were taken from 3 clinics in DICOM format and anonymized for use in this study. CBCT 
machines that were used in this study were namely, Ortophos XG unit (Ortophos XG3D; Sirona; Bensheim; 
Germany), Carestream Health (Carestream Health CS 8100 3D; Kodak; New York; USA), PaX-i3D Smart (PaX-
i3D Smart PHT-30LFO0; Vatech; Hwaseong-si; Gyeonggi-do; Korea). The scanners offer multiple fields of view, 
allowing the dentist to select the optimum scan on a case-by-case basis. Images were obtained using a 4 × 4 field 
of view (FoV) to 10 × 10 FoV between 0.100 and 0.200  mm3 voxel sizes with isotropic voxels.

Testing the system. The primary goal of this study was to evaluate the ability of this AI system (Diagnocat) 
to enhance the diagnostic capabilities of the dentist and radiologist. To test this, a few steps had to be taken to 
prepare the dataset for viewing and analysis. These steps are necessary due to the inherent variability of CBCT 
datasets coming from CBCT machines as well as the variability in clinical experience on the part of the examin-
ers. Thus, this study has two distinct parts. The first was preparing the dataset for evaluation and the second was 
evaluating the usefulness of the system for enhancing diagnostic capabilities.

Part (A): Preparing the dataset for evaluation. Image processing. Due to the high variety of CBCT scanning 
devices and different calibration settings, CBCT images need to be normalized for both manual and automatic 
diagnostics. This is usually done with the help of such DICOM properties as window level and window width 
extracted from scan metadata. Unfortunately, the radiodensity of bone and tissue scans from the same scanning 
device manufacturer differs when the extracted window is applied. The difference is significantly higher when 
corresponding windows are applied to images from different devices. Normalization of radiodensity measured 
in Hounsfield Units (HU) is a basic requirement for computer-aided  diagnostics53,54 that ensures the similar 
performance of the system on images from different scanners and imaging protocols. Our normalization process 
comprises clipping outlier HU values and basic standardization:

1. HU values below − 1000 (air radiodensity) are clipped.
2. HU values below 5th and above 95th percentiles of an image are clipped.
3. HU values are standardized by subtracting the mean value and dividing the difference by the standard devia-

tion.

The last step may vary depending on the task. When there is no need to preserve the difference between a 
dense bone (2000 HU) and metal (3000 HU) radiodensities, HU values above 2000 can be clipped, and resulting 
values can be rescaled to [0, 1] range.

Localization datasets. To obtain precise segmentation results for training purposes, dental and radiology spe-
cialists used ITK-SNAP software (http:// itksn ap. org, USA)55 that allows users to navigate 3D images in three 
planes. Once being annotated, each segmentation mask was automatically examined to eliminate human factors, 
e.g. misalignment of a tooth volume and a resulting mask.

The localization modules have different datasets sharing the properties of data origin and variety in scanner 
origin, FoV, voxel size, and artifacts presence. CBCT scans were sourced from several clinic chains in Moscow, 
Russia. Each dataset includes a different number of CBCT scans depending on the data counts required to 
achieve desired module performance, the annotation difficulty, module-specific requirements of data variety, and 
module region of interest (e.g. 1 CBCT image can be a single input for tooth localization module and a sample 
of 32 inputs for periodontitis module).

• ROI (region of interest) localization module. The dataset consists of 562 CBCT scans with segmented teeth 
and jaws. The scans are equally distributed among 19 scanner models of 12 scanner manufacturers.

• Tooth localization and numeration module. The dataset consists of 684 CBCT scans with segmented and 
numerated teeth. The scans are equally distributed among 24 scanner models of 15 scanner manufacturers.

• Periodontitis module. The dataset consists of 99 CBCT scans with the precisely segmented alveolar bone area 
and 120 CBCT scans with precisely segmented enamel area of teeth. The scans are equally distributed among 
11 scanner models of 8 scanner manufacturers. Each side of a tooth (mesial, distal, oral, and vestibular) has 
a group of three periodontium landmark points: a point of cementoenamel junction, a point of bone attach-

https://ico.org.uk/media/1061/anonymisati
http://itksnap.org
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ment, and a point of bone peak within 2 mm tooth vicinity. The dataset with segmented enamel area is used 
to obtain the first point, while the dataset with segmented alveolar bone is used to obtain two latter points.

• Caries localization module. The dataset consists of 4398 tooth volumes with a context area. The class labels 
are background (no pathology), caries sign, metallic artifact, and non-contrast filling. One instance can have 
multiple conditions. A lead radiologist (KO) additionally validated the dataset.

• Periapical lesion localization module. The dataset consists of 2800 tooth volumes with a context area. The class 
labels are background (no pathology), PDL widening, poorly circumscribed radiolucency, well-circumscribed 
radiolucency, and radiopacity. One instance can have multiple conditions. A lead radiologist (KO) addition-
ally validated the dataset.

Classification (descriptor) datasets. Descriptor, the main diagnostic module, is a complex model that, besides 
accurate data collection, requires several iterations of dataset formation and annotation regulations. We pro-
vided a detailed description of the annotation process and insights on managing class imbalance and high model 
uncertainty.

• Annotation protocol. Every radiologist was provided with an instruction describing annotation including a 
list of required pathologies, access to the internal web-based application that provided a data collection form, 
and an option to download study DICOM for standalone viewing. Additionally, every radiologist reviewed 
and described 3 sample CBCTs containing all target pathologies, which were then reviewed by the study 
supervisor, a highly experienced oral and maxillofacial radiologist (KO). Then, the study supervisor provided 
feedback to the radiologist. Each radiologist independently studied a CBCT image in a clinical viewer soft-
ware and noted the presence or absence of each condition for each tooth in the target list. Examiners used 
the CBCT viewer software Planmeca Romexis (Romexis 5.1; Helsinki; Finland) which they were already 
comfortable with and used in their clinical practice. Radiologists were required to answer either “applicable”, 
or “not applicable” for every condition in Table 5.

• Initial annotation. During the first stage of the annotation process, a group of experienced radiologists anno-
tated a large set of images following the annotation protocol. Images were randomly sampled, filtered by the 
study coordinator according to the inclusion and exclusion criteria, and then passed to radiologists. Before 
the main annotation process, annotators were trained and evaluated by the study coordinator:

• Participant studied annotation instruction and protocol.
• Participant annotated a small set of exemplary images, the study coordinator evaluated the results and 

provided feedback to the participant.

During this stage, each sample (distinct patient-tooth) received 1 diagnostic vote for every condition in 
consideration.

• Test set separation. Following the completion of the first stage of annotation, a test was separated from the 
annotated data pool and excluded from all following development activities. Test images were sampled in 
a way to have at least N positives and N negatives for every condition. The choice of N, equal to 300, was 
motivated by the available number of positive samples for rare conditions. The sampling procedure was as 
follows.

1. Randomly sample a condition.
2. If the test set contained less than N positives of the condition, sample a random positive example from 

the data pool and allocate it to the test set. Additionally, allocate all other samples from the same image.
3. Repeat until the test set contains at least N positives and N negatives for each condition.

Each sampled example contains annotation for all target conditions, so the resulting test set contains more 
than N positives and N negatives for the majority of conditions. Additionally, the test set contains a different 
number of positives and negatives for each condition, typically, negatives outnumbering the positives (class 
imbalance). This influenced our decision to choose the AUPRC metric for evaluation as it is robust to signifi-
cant class imbalance. Moreover, to balance the tendency to predict positive and negative classes before testing, 
model outputs underwent probabilistic  calibration56. To obtain well-calibrated probabilities and achieve good 
classification performance at the threshold 0.5 (which was used as the model’s single operating point), model 
softmax scores were rescaled by optimizing p = aq ÷ (aq + (1 − a) × (1 − q)) where a is a model uncalibrated score, 
p is the resulting calibrated probability, and q is a parameter. Parameter q was selected by optimizing the F1 score 
over the development set.

• Test set additional annotation. An additional vote from a second radiologist (SA) was obtained for each tooth 
condition (sample). Then, for the sample where the first two radiologists disagreed, another vote from the 
third radiologist was obtained (DT). Ground truth was decided by the majority vote (2-vote agreement).

• Model development dataset. A set for model development purposes formed from the remaining annotated 
data pool (i.e. not included in the test set) was split into training and validation subsets as it was fit for the 
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task. As the majority of examples in the train set had only 1 vote, it was expected that some labels would be 
incorrect. However, deep learning is known to have some level of robustness against noisy training labels, 
and we hypothesized that the models would be able to learn the correct labels and achieve satisfactory scores. 
Additionally, the partially trained model could be used to find and correct the erroneous votes by measuring 
disagreement between votes and model predictions. In the course of this project, this hypothesis was con-
firmed. While samples with 1 vote were widely used in the train set, model validation was performed using 
standard 2-vote agreement protocol.

• Rare case mining. Following the separation of the train set, a series of models was trained. Then, the best 
model was used to enrich the train set by mining rare cases and finding potentially erroneous votes in the 
train set. Initially rare conditions did not contain enough positive examples in the train set. To rectify this, 
the following mining procedure was implemented:

1. Define a set of rare condition lists where additional data is required.
2. Perform inference of the best model available at a time on studies from the non-annotated data pool.
3. Calculate information entropy for every condition in the rare condition list.
4. Sample teeth with high information entropy.
5. Run images containing sampled teeth through the annotation process.

Information entropy is defined as

where Pi is the probability of the ith outcome of a set of all possible outcomes. For binary tasks, such as our 
formulation, i iterates over “present” and “not present”. Information entropy is highest when probabilities of 
“present” and “not present” are equal to 0.5. Intuitively, information entropy is a measure of uncertainty in the 
probability distribution. High uncertainty on an example excluded from the training and validation set means 
that the training process is likely to improve if the example is annotated and added to the training set.

• Incorrect vote mining and rectification. Since we collected only 1 vote for a large number of images allocated 
to the train set, some of these votes were submitted incorrectly. To rectify this, we implemented the following 
procedure:

1. Perform K-fold inference on all images in the train set using the best model available at a time. K-fold 
inference procedure:

(a) Split train images into K disjoint sets
(b) Pick a subset i
(c) Train model on all subsets except i
(d) Perform inference onset i and record resulting scores
(e) Repeat for every i in K

2. Calculate radiologist-model disagreement.
3. Sample from cases where radiologist-model disagreement was high.
4. Collect additional votes for sampled cases using the annotation process.

• Dataset statistics. We evaluated the performance of our models on a dataset with 705,017 samples consist-
ing of 28,745 teeth and 25 conditions across 1135 CBCT scans. The scans are distributed among 31 scanner 
models of 17 scanner manufacturers.

The flow of the system pipeline is shown in Fig. 1. Each step analyzes data in progressively higher spatial 
resolution, from a coarse voxel size of 3  mm3 at the initial stage of ROI localization to a fine voxel size up to 0.15 
 mm3 for final per-tooth diagnosis. This multi-step pathway was required due to the large memory size of CBCT 
images at the original resolution.

The first step is the ROI localization module (Fig. 1). Reduction of FoV to ROI sufficient for analysis of dental 
diseases allows completion of the diagnostics without any information loss. The ROI localizer identifies specific 
regions of jaws and teeth with some extended context and excludes other anatomical regions. The localization 
module is based on the volumetric modification of U-Net  architecture57 performing 3-class semantic segmen-
tation: background, teeth, and jaw bone. To fit large FoV volumes, the module operates at 3  mm3 per voxel 
resolution.

The cropped image is further passed to the tooth localization and numeration module (Fig. 1) that plays a 
crucial role in the diagnostic pipeline. Tooth localization allows further analysis of different conditions inside 
and around a tooth, while tooth numeration helps with determining number-specific attributes and inter-tooth 
relations. The localization and numeration module is implemented as a volumetric U-Net architecture network 
performing semantic segmentation on 54 classes (the background, 52 possible teeth, and an additional class for 
supernumerary teeth). It operates at 1  mm3 per voxel resolution.

At the next step, each localized tooth area is extended with some context and passed to Descriptor (Fig. 1) 
that defines the probabilities of a tooth being affected by a set of conditions (Table 1). The descriptor is a principal 

S = −Pi log Pi
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classification module and is implemented as an ensemble of a  ResNeXt58 architecture with integrated squeeze-
and-excitation  blocks59 and a  DenseNet60 architecture performing multiple binary classifications on 25 classes.

Three modules for auxiliary classification purposes further examine each tooth volume. (1) The periodontitis 
module detects and evaluates alveolar bone loss in close vicinity to a tooth. It allows the classification of 3 bone 
loss types of different severity by calculating distances between pairs of periodontium landmarks segmented by 
a separate landmark localizer. (2) The caries localization module defines signs of caries probability using seg-
mentation of carious lesions found inside a tooth area (Figs. 2, 3). (3) The periapical lesion localization module 
detects periapical lesion presence and allows the classification of 4 lesion types found around a tooth (Figs. 4, 
5). The embedded localizers of three classification modules are implemented as volumetric U-Net architecture 
networks performing semantic segmentation.

Part (B) Evaluating the ability of the AI system (Diagnocat) to enhance the diagnostic capabilities of the dentist and 
radiologist. Evaluating diagnostic capabilities of the Diagnocat AI system. The primary endpoint was to test 
the end-to-end performance of this AI system, measuring tooth localization, numeration, and diagnostic sub-
modules as a single system. It allowed us to estimate the overall safety and performance of the proposed system.

The Diagnocat AI software was used to obtain a binary condition prediction made on 3D CBCT scans using 
its predefined operating point (checkpoints of the trained models), which was then compared to ground truth to 
calculate sensitivity (proportion of correctly defined conditions) and specificity (proportion of correctly defined 
teeth not having conditions).

The secondary endpoint was to evaluate examiners’ performance and compare it to the AI results. Although 
examiners were tested on the data that was beforehand annotated by each of them the results showed the com-
parable diagnostic quality of Diagnocat and the examiners. For the performance evaluation, a set of 300 CBCT 
maxillofacial images in DICOM format was sourced consecutively from three clinics (100 images from each 
site). CBCT machines that were used in this part were also from the same machines, namely, 3 different CBCT 
scanners were included in the study to test the reliability of AI systems in different CBCT scanners and setup. 
CBCT machines that were used in this study were namely, Orthophos XG unit (Orthophos XG3D; Sirona; Ben-
sheim; Germany), Carestream Health (Carestream Health CS 8100 3D; Kodak; New York; USA), PaX-i3D Smart 

Figure 1.  Flow diagram of CBCT processing pipeline and workflow of the AI system.
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(PaX-i3D Smart PHT-30LFO0; Vatech; Hwaseong-si; Gyeonggi-do; Korea). The scanners offer multiple fields 
of view, allowing the dentist to select the optimum scan on a case-by-case basis. Images were obtained using a 
4 × 4 FOV to 10 × 10 FOV between 0.100 and 0.200  mm3 voxel sizes with isotropic voxels.

Figure 2.  Caries lesion localization mask at the sagittal slice of tooth 17.

Figure 3.  Caries lesion at mesiodistal and axial slices of tooth 45. No caries predicted by caries localization 
module. The identification of caries was overlooked due to metallic artifacts which is an example of incorrect 
classification by the AI system.

Figure 4.  Periapical lesion localization mask at tooth 13.
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All images are anonymized by replacing “PatientName” with an empty string and truncating “PatientBirth-
Date” to the first day of the nearest year. Subsequently, images were screened against the inclusion and exclusion 
criteria.

The inclusion criteria were:

• a patient with the ability to consent to participate in the project
• a patient of 21 years or older
• anonymized CBCT image of the maxillofacial region, and
• Both model and manufacturer of imaging devices are not present in the training dataset of the system (allows 

testing generalizability to new imaging devices).

The exclusion criteria were:

• images containing significant motion artifacts (as judged by the radiologist coordinating the study)
• images containing severe artifacts such as streak artifacts, beam hardening (low and medium artifact remover 

was applied using device-specific software when available for standardization of the images) and;
• images of patients with cleft lip and palate, trauma, bone lesions, and severe bone erosions.

A scientific coordinator (KO—an internationally recognized dentomaxillofacial radiologist with at least 
18 years of experience) then reviewed the final set of images and 10 images were rejected due to significant 
motion artifacts. To establish the ground truth, examiners were recruited from experienced dentomaxillofacial 
radiologists. In total, the data was evaluated by four of them with a mean of 10 years of professional experience.

Each examiner was responsible for the annotation of CBCT anatomy on their own. Moreover, the examin-
ers were unaware of the conditions of the patients. Each examiner was then trained by the study coordinator to 
annotate 3D CBCT scans and fill the provided form correctly. After the study coordinator evaluated the exam-
iners and approved them as sufficiently trained, the study proceeded to actual data collection. Each radiologist 
received a random, non-overlapping portion of the dataset via electronic means (shared folder). They evaluated 
the cases in their clinical environment and filled the spreadsheet, then saved them to separate shared folders. 
The examiners could not access each other’s forms. After they evaluated cumulatively and annotated the full 
CBCT dataset, the second round of annotation started, where the examiners were assigned a different random 
subset of the dataset. After the second round was finished, the third commenced. At the end of the third round, 
the scientific coordinator collected the examination from 3 radiologists for every sample. Evaluations took place 
between December 2019 and April 2020. Data were extracted on an individual and group comparison level. To 
establish the true values of conditions, a consensus process was performed, where the ground truth was taken as 
a majority (at least 2 of 3 votes) per each case, tooth, and condition. The whole process was then reviewed again 
by the study coordinator for last adjustments and to establish final ground truth evaluations of each patient and 
teeth as well as for each condition. Inference of the Diagnocat system was performed once for the full dataset: 
an engineer performed inference using the production version of the system.

Figure 5.  Incorrect periapical lesion localization mask at tooth 45. The lesion was predicted at the adjacent 
tooth 46.
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Evaluating the clinical performance. After evaluation of the diagnostic capability of the Diagnocat AI system, 
the next step is to evaluate the clinical performance of the system which can be achieved by comparing the accu-
racy of the diagnosis and time required for the reading for aided and unaided cases. An independent clinical staff 
recorded the time for evaluations with a timer. Evaluation duration was compared between aided and unaided 
to determine if the addition of Diagnocat suggestions changes the time required to review the case. It was esti-
mated that approximately eight weeks were required to conduct this study. This was addressed at each stage, 
from recruitment to analysis: recruitment and consent—1 week, training and randomization—1 week, investi-
gation—1 week, washout—at least 1 month, investigation—1 week, and analysis—2 weeks. The washout period 
was at least 1 month. This was to minimize memory bias and confounding factors. Crossover design reduced 
confounding factors as well. To identify the number of required examiners a power analysis was  performed61. 
To hold the study at least 20 examiners were required in total. Thus, 24 dentists were enrolled in the study as the 
examiners and divided into two groups at a 1:1 ratio: (1) Group 1 examined the CBCTs with AI system-aided; (2) 
Group 2 examined the CBCTs unaided. Both groups during the study worked with the CBCT viewer software 
Planmeca Romexis (Romexis 5.1; Helsinki; Finland). The aided group also used the proposed system via a web-
based interface. The aided group examined both the visual features of a tooth and the suggested classification and 
then decided to either keep the suggested classification or revise and change it. The confidence interval is 0.80, 
and 5% was used for error. Enrolled examiners were qualified general dental practitioners of various experiences 
with no defined specialty interest. Following inclusion and exclusion criteria were applied:

• Inclusion criteria

1. Qualified dentist—General Dental Practitioner
2. At least 5 years of experience in dentistry
3. Ability to interpret dental CBCT
4. Access to CBCT software at the workplace

• Exclusion criteria

1. Unable to commit to the study
2. Employees of Diagnocat—and their relatives were excluded from participation

The scientific advisor for CBCT scan reading conducted training sessions for examiners for one hour includ-
ing the use of the Diagnocat AI system. 10 training CBCT scans were used for training and practice purposes; 
those encompassed the full spectrum of required diagnostics. A list of all possible diagnoses was given as well to 
ensure that the scope of diagnosis was calibrated and participants were aware of that (Tables 2, 3, 4). There was 
also remote support available to guide through the training process. For this study, the overall dataset contained 
40 CBCT images, including 30 study images and 10 images for examiners’ training. These scans were sampled 
randomly from the dataset of the standalone performance test. 30 study images were sequentially numbered 
after randomization was performed. Thus each participant had a different sequence of clinical cases. Each CBCT 
scan required all 32 teeth to be diagnosed with none, one or more pathologies. Thus, 32 units in each CBCT, 
multiplied by the number of pathologies identified in each unit, with a total number of 30 CBCT scans per group. 
In this way, 960 (30 × 32 = 960) diagnostic activities were carried out in each investigation by each participant. 
The crossover nature of this study ensured that this was performed twice by each participant. Table 5 shows the 
conditions that were asked to diagnose by the examiners. Once investigations were completed, the raw data from 
forms filled by the unaided group and Diagnocat was transformed into the same format using automated scripts 
written before the study and then sent to an independent blinded assessor. This same assessor for both groups 
analyzed the data and compared it with ground truth (same as in the standalone Diagnocat performance test). 
Raw data were compared to ground truth electronically. Scoring was performed via electronic means and data 
stored securely. Once this was completed, groups were decoded and results compared. The output of this process 
was a set of condition detections, where for every tooth and condition model outputs a probability distribution 
along with predicted tooth number. This evaluation was calculated only once during this study and was not used 
for system training purposes. Moreover, during this process engineers did not have access to the examiners’ votes 
data. To score the results, an independent expert was provided with both ground truth and Diagnocat inference 
data. The outside expert was responsible for running data analysis and producing performance measurements 
for primary and secondary endpoints.

Examiner reliability and statistical analysis. Statistical analyses were carried out using the SPSS 21.0 
software (SPSS, Chicago, IL, USA). Intra- and inter-examiner validation measures were conducted. The inter-
observer reliability was determined by the intraclass correlation coefficient (ICC) and the coefficient of variation 
(CV) [CV = (standard deviation ÷ mean) × 100%]. Values for the ICC range from 0 to 1. ICC values greater than 
0.75 show good reliability, and the low CV demonstrates the precision error as an indicator for  reproducibility62. 
The student’s t-test was performed for statistical analysis of variables (p < 0.05).

The differences between examiners in aided vs unaided groups as well as the time for evaluating the CBCT 
images were also calculated. Data were assessed for normality using the Kolmogorov–Smirnov test. For group 
comparisons, Spearman correlation analyses and Mann Whitney-u test were used. A value of p < 0.05 was con-
sidered statistically significant.
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